Exploring basic numerical capacities in children with difficulties in simple arithmetical achievement
Exploración de las capacidades numéricas básicas en niños con dificultades en el rendimiento en aritmética básica
Danilka Castro Cañizares , Pablo Dartnell , Nancy Estévez Pérez
Suma Psicológica, (2021), 28(1), pp. 1-9.
Recibido el 24 de julio de 2020
Aceptado el 5 de noviembre de 2020
Introducción: Teorías cognitivas actuales sugieren que las dificultades en el aprendizaje de las matemáticas pueden ser causadas por una disfunción en la habilidad de representar las numerosidades no-simbólicas (habilidades no-simbólicas), por dificultades en la habilidad de asociar los números con representaciones analógicas, no-simbólicas, subyacentes a la magnitud (habilidades simbólicas y de mapeo) o por una combinación de ambos déficits. El objetivo de este estudio fue contrastar la hipótesis de un déficit en el sentido del número y la hipótesis del déficit en el acceso, para identificar el posible origen de los diferentes grados de dificultades en aritmética. Método: Se comparó el desempeño de niños con muy bajo rendimiento en aritmética (VLA), niños con bajo rendimiento en aritmética (LA) y pares con rendimiento típico (TA), en tareas numéricas no-simbólicas, simbólicas y de mapeo. También se evaluaron la capacidad intelectual y la memoria de trabajo como variables de control. La muestra estuvo conformada por 85 niños chilenos (de 3ero a 6to grado) del Sistema de General de Educación Pública. Los datos fueron incluidos en varios análisis de covarianza para identificar posibles perfiles conductuales diferentes entre grupos. Resultados: Los resultados mostraron que los niños con VLA tienen déficits tanto en el procesamiento no-simbólico de la numerosidad como en las habilidades de mapeo entre los símbolos numéricos y la magnitud analógica que estos representan. Los niños con LA solo mostraron déficits en las habilidades de mapeo. Conclusiones: Estos hallazgos sustentan la hipótesis de que un daño en las representaciones numéricas no-simbólicas subyace a las dificultades severas en aritmética. Por el contrario, el bajo rendimiento en aritmética parece explicarse por deficientes habilidades de mapeo, lo cual se ajusta mejor a la hipótesis del déficit en el acceso. Los anteriores resultados, ofrecen nuevas evidencias respecto a los mecanismos cognitivos que subyacen a los perfiles conductuales identificados en los niños con diferentes grados de dificultades en aritmética.
Palabras clave:
Dificultades de aprendizaje, sentido numérico, discalculia del desarrollo
Introduction: Current cognitive theories suggest that mathematical learning disabilities may be caused by a dysfunction in the ability to represent non-symbolic numerosity (non-symbolic skills), by impairments in the ability to associate symbolic numerical representations with the underlying analogic non-numerical magnitude representation (symbolic and numerical mapping skills), or by a combination of both deficits. The aim of this study was to contrast the number sense hypothesis and the access deficit hypothesis, to identify the possible origin of the varying degrees of arithmetical difficulties. Method: We compared the performance of children with very low arithmetic achievement (VLA), children with low arithmetical achievement (LA), and typically achieving peers (TA), in non-symbolic, symbolic and numerical mapping tasks. Intellectual capacity and working memory were also evaluated as control variables. The sample comprised 85 Chilean children (3rd to 6th grades) from the Public General Education System. Data were included in several covariance analyses to identify potentially different behavioural profiles between groups. Results: The results showed deficits in both non-symbolic numerosity processing and number-magnitude mapping skills in children with VLA, whereas children with LA exhibited deficits in numerical mapping tasks only. Conclusions: These findings support the hypothesis of impaired non-symbolic numerical representations as the cognitive foundation of severe arithmetical difficulties. Low arithmetical achievement, in contrast, seems to be better explained by defective numerical mapping skills, which fits the access deficit hypothesis. The results presented here provide new evidence regarding the cognitive mechanisms underlying the different behavioural profiles identified in children with varying degrees of arithmetical difficulties.
Keywords:
Learning disabilities, number sense, developmental dyscalculia
Aragón, E., Cerda, G., Delgado, C., Aguilar, M., & Navarro, J. I. (2019). Individual differences in general and specific cognitive precursors in early mathematical learning. Psicothema, 31(2), 156-162. https://doi.org/10.7334/psicothema2018.306
Barnes, M. A., Clemens, N. H., Fall, A.-M., Roberts, G., Klein, A., Starkey, P., McCandliss, B., Zucker, T., & Flynn, K. (2020). Cognitive predictors of difficulties in math and reading in pre-kindergarten children at high risk for learning disabilities. Journal of Educational Psychology, 112(4), 685–700. https://doi.org/10.1037/edu0000404
Bruandet, M., Molko, N., Cohen, L., & Dehaene, S. (2004). A cognitive characterization of dyscalculia in Turner syndrome. Neuropsychologia, 42(3), 288-298. https://doi.org/10.1016/j.neuropsychologia.2003.08.007
Butterworth, B. (2003). Dyscalculia screener: Highlighting children with specific learning difficulties in mathematics. London, England: NFER Nelson.
Castro, D., Amor, V., Gómez, D., & Dartnell, P. (2017). Contribución de los componentes de la memoria de trabajo a la eficiencia en aritmética básica durante la edad escolar. Psykhe, 26(2), 1-17. https://doi.org/10.7764/psykhe.26.2.1141
Castro, D., & Reigosa, V. (2011). Calibrando la línea numérica mental: Evidencias desde el desarrollo típico y atípico. Revista Neuropsicología, Neuropsiquiatría y Neurociencias, 11(1), 17-31. https://dialnet.unirioja.es/servlet/articulo?codigo=3640852
Crawford, J. R., Garthwaite, P. H., & Porter, S. (2010). Point and interval estimates of effect sizes for the case-controls design in neuropsychology: Rationale, methods, implementations, and proposed reporting standards. Cognitive Neuropsychology, 27(3), 245-260. https://doi.org/10.1080/02643294.2010.513967
De Smedt, B., & Gilmore C. K. (2011). Defective number module or impaired access? Numerical magnitude processing in first graders with mathematical difficulties. Journal of Experimental Child Psychology, 108(2), 278-292. https://doi.org/10.1016/j.jecp.2010.09.003
Finke, S., Freudenthaler, H. H., & Landerl, K. (2020). Symbolic processing mediates the relation between non-symbolic processing and later arithmetic performance. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.00549
Geary, D. C., Hoard, M. K., Nugent, L., & Byrd-Craven, J. (2008). Development of number line representations in children with mathematical learning disability. Developmental Neuropsychology, 33(3), 277-299. https://doi.org/10.1080/87565640801982361
Guzmán, B., Rodríguez, C., Sepúlveda, F., & Ferreira, R. A. (2019). Sentido numérico, memoria de trabajo y RAN: Una aproximación longitudinal al desarrollo típico y atípico de niños chilenos. Revista de Psicodidáctica, 24(1), 62-70. https://doi.org/10.1016/j.psicod.2018.11.002
Hannula, M. M., Räsänen, P., & Lehtinen, E. (2007). Development of counting skills: Role of spontaneous focusing on numerosity and subitizing-based enumeration. Mathematical Thinking and Learning, 9(1), 51-57. https://doi.org/10.1207/s15327833mtl0901_4
Ibáñez-Azorín, E., Martin-Lobo, P., Vergara-Moragues, E., & Calvo, A. (2019). Profile and neuropsychological differences in adolescent students with and without dyslexia. Revista Latinoamericana de Psicología, 51(2), 166-175. https://doi.org/10.14349/rlp.2019.v51.n2.4
Izard, V., & Dehaene, S. (2007). Calibrating the mental number line. Cognition, 106(3), 1221-1247. https://doi.org/10.1016/j.cognition.2007.06.004
Lafay, A., St-Pierre, M. C., & Macoir, J. (2019). Impairment of non-symbolic number processing in children with mathematical learning disability. Journal of Numerical Cognition, 5(1), 86-104. https://doi.org/10.5964/jnc.v5i1.177
Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8-9 years-old students. Cognition, 93(2), 99-125. https://doi.org/10.1016/j.cognition.2003.11.004
Lewis, K. E., & Fisher, M. B. (2016). Taking stock of 40 years of research on mathematical learning disability: Methodological issues and future directions. Journal for Research in Mathematics Education, 47(4), 338-371. https://doi.org/10.5951/jresematheduc.47.4.0338
Liporace, M. F., Ongarato, P., Saavedra, E., & Casullo, M. M. (2004). Test de matrices progresivas, escala general: Un análisis psicométrico. Revista Evaluar, 4(1), 50-69. https://doi.org/10.35670/1667-4545.v4.n1.598
Maloney, E., Risko, E., Preston, F., Ansari, D., & Fugelsang, J. (2010). Challenging the reliability and validity of cognitive measures: The case of the numerical distance effect. Acta Psychologica, 134(2), 154-161. https://doi.org/10.1016/j.actpsy.2010.01.006
Mazzocco, M. M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child Development, 82(4), 1224-1237. https://doi.org/10.1111/j.1467-8624.2011.01608.x
Murphy, M. M., Mazzocco, M. M., Hanich, L. B., & Early, M. C. (2007). Cognitive characteristics of children with mathematics learning disability (MLD) vary as a function of the cutoff criterion used to define MLD. Journal of Learning Disabilities, 40(5), 458-478. https://doi.org/10.1177/00222194070400050901
Raven, J. C., Court, J. H., & Raven, J. (1992). Standard progressive matrices. Oxford, England: Oxford Psychologists Press.
Reeve, R., Reynolds, F., Humberstone, J., & Butterworth, B. (2012). Stability and change in markers of core numerical competencies. Journal of Experimental Psychology: General, 141(4), 649. https://doi.org/10.1037/a0027520
Reigosa-Crespo, V., Valdés-Sosa, M., Butterworth, B., Estévez, N., Rodríguez, M., Santos, E., Torres, P., Suárez, R., & Lage, A. (2012). Basic numerical capacities and prevalence of developmental dyscalculia: The Havana Survey. Developmental Psychology, 48(1), 123. https://doi.org/10.1037/a0025356
Rousselle, L., & Nöel, M. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs. non-symbolic number magnitude processing. Cognition, 102(3), 361-395. https://doi.org/10.1016/j.cognition.2006.01.005
Schleifer, P., & Landerl, K. (2011). Subitizing and counting in typical and atypical development. Developmental Science, 14(2), 280-291. https://doi.org/10.1111/j.1467-7687.2010.00976.x
Schneider, M., Merz, S., Stricker, J., De Smedt, B., Torbeyns, J., Verschaffel, L., & Luwel, K. (2018). Associations of number line estimation with mathematical competence: A meta-analysis. Child Development, 89(5), 1467-1484. https://doi.org/10.1111/cdev.13068
Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75(2), 428-444. https://doi.org/10.1111/j.1467-8624.2004.00684.x
Taborda, A.R., Brenlla, M.E., & Barbenza, C. (2011). Adaptación argentina de la Escala de Inteligencia de Wechsler para Niños IV (WISC-IV). En D. Wechsler (Ed.), Escala de Inteligencia de Wechsler para Niños IV (WISC-IV) (pp. 37-55). Buenos Aires, Argentina: Paidós.
Tillman, C. M., Nyberg, L., & Bohlin, G. (2008). Working memory components and intelligence in children. Intelligence, 36(5), 394-402. https://doi.org/10.1016/j.intell.2007.10.001
Wilson, A., & Dehaene, S. (2007). Number sense and developmental dyscalculia. In D. Coch, G. Dawson, & K. Fischer (Eds.), Human behaviour, learning, and the developing brain: Atypical development (pp. 212-263). New York, USA: Guilford Press.
Wong, T. T. Y., & Chan, W. W. L. (2019). Identifying children with persistent low math achievement: The role of number-magnitude mapping and symbolic numerical processing. Learning and Instruction, 60, 29-40. https://doi.org/10.1016/j.learninstruc.2018.11.006
Wong, T. T. Y., Ho, C. S. H., & Tang, J. (2016). The relation between ANS and symbolic arithmetic skills: The mediating role of number-numerosity mappings. Contemporary Educational Psychology, 46, 208-217. https://doi.org/10.1016/j.cedpsych.2016.06.003
Wong, T. T. Y., Ho, C. S. H., & Tang, J. (2017). Defective number sense or impaired access? Differential impairments in different subgroups of children with mathematics difficulties. Journal of Learning Disabilities, 50(1), 49-61. https://doi.org/10.1177/0022219415588851
Dejar un comentario
¿Quieres unirte a la conversación?Siéntete libre de contribuir